AFRL-RI-RS-TR-2008-156

In House Interim Technical Report
June 2008

MULTI-AGENT PLANNING IN DYANMIC
DOMAINS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-156 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

Is/ Is/
ALEXF. SISTI JAMES W. CUSACK
Chief, Information Systems Research Chief, Information Systems Division
Branch Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE O 10188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
Jun 2008 Interim Apr 06 — Mar 08
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
In House

MULTI-AGENT PLANNING IN DYNAMIC DOMAINS

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

62702F
6. AUTHOR(S) 5d. PROJECT NUMBER
5588
James H. Lawton
Matthew Berger 5e. TASK NUMBER A

5f. WORK UNIT NUMBER

TR
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
AFRL/RISB REPORT NUMBER
525 Brooks Rd
Rome NY 13441-4505
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/RISB
525 Brooks Rd 11. SPONSORING/MONITORING
Rome NY 13441-4505 AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-156

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA#WPAFB 08-3399

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The issue of multi-agent planning in highly dynamic environments is a major impediment to conventional
planning solutions. Plan repair and replanning solutions alike have difficulty adapting to frequently changing
environment states. To adequately handle such situations, this paper instead focuses on preserving individual
agent plans through multi-agent coordination techniques. We detail a reactive agent system architecture in
which the main focus of an agent is to be able to achieve its subgoals without interfering with any other agent.
The system is a 3-level architecture, where each level is guided by the following fundamental principles,
respectively: when is it valid to generate a plan for a subgoal, who is most appropriate for completing the
subgoal, and how should the plan be carried out.

15. SUBJECT TERMS
Distributed Planning, Dynamic Reasoning, Intelligent Agents

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF }18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES James H. Lawton
a. REPORT b. ABSTRACT c. THIS PAGE UuU 8 19b. TELEPHONE NUMBER (Include area code)
U U U N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 739.18

Contents

1 Executive Summary 1
2 Introduction 2
2.1 Multi-agent Sokoban 3

3 Methods, Assumptions and Procedures 5
3.1 Coordinating Temporal Consistency 5
3.1.1 Temporal Constraint Matrices 6

3.1.2 Deadlock Graphs 7

3.1.3 Subgoal Coordination 8

3.1.3.1 Assuring Temporal Validity 11

3.1.3.2 Conflict Minimization 11

3.2 Contracting Subgoals 12
3.2.1 Auctioning Process 12

3.2.2 Bid Determination 13

323 DISCUSSION v v e e e e e e e e e e 14

3.3 Resource Reservation 14
3.3.1 Zone Priority and Lower Bound Cost 15

4 Results and Discussion 17
4.1 Limitations and Future Work L. 19

S Conclusion 21
6 References 22
7 Symbols, Abbreviations and Acronyms 23

List of Figures

2.1

3.1
3.2
33
34
3.5

4.1
4.2
4.3

An example Sokoban scenario oL oL L 3
Algorithm detailing the 3-level system architecture. 6
Algorithm for deriving conflicting states., 8
Deadlock Graph Construction., 9
Subgoal coordination algorithm. 10
Zone coordination algorithm. oL 15
An example Sokoban scenario L L 18
Deadlock graphs for The running Sokoban example 19
Sokoban example that current system is unable toresolve. 20

i

1 Executive Summary

Intelligent software agents will almost certainly be a critical component of future Air Force (AF)
distributed, heterogeneous information and decision-support systems. The Agents Technology
Research Group of the Air Force Research Laboratory’s Information Directorate is committed
to ensuring that the core technologies needed to support agent-based systems for AF needs are
being developed. One of these core technologies is the area of distributed multi-agent planning
in highly dynamic domains, a key component of the AF future Command and Control strategy
[2]. Multi-agent planning in the context of rapidly-changing environments, however, becomes an
involved, unmanageable problem rather quickly. Further, maximizing concurrency and ensuring
conflict-free plans becomes a difficult problem to manage when using techniques like plan repair
and replanning. Therefore, multi-agent coordination through conflict resolution of individual agent
plans can be an effective way to ensure safe planning while providing a reasonable execution time.

This report describes an approach that rapidly merges individual agent plans in highly dynamic
environments. Agents generate their own plans separately, and use a coordination process that
is concerned with maximizing parallelism and minimizing conflicts in the execution of the plans.
The algorithm is targeted towards environments in which a global goal may be difficult for a
single agent to achieve alone, but becomes more manageable when the goal can be partitioned into
subgoals that can be allocated to several cooperating agents. As each agent generates a plan for
just its own subgoals, the problem reduces to agent coordination, by ensuring that no conflicts exist
between plans.

To accomplish this, we have developed and implemented a 3-level multi-agent coordination
architecture, where each level resolves fundamental issues in agent conflicts. The first level handles
the issue of when it is valid to plan for a subgoal. The second level addresses the issue of who
should be made responsible for achieving a subgoal. The third level deals with the issue of how to
achieve a subgoal, in which agents reserve resources for planning out primitive actions.

To ground this discussion we use the domain of Sokoban as a running example to better illus-
trate the system. Sokoban is a simple discretized box pushing environment in which a mover must
push all boxes in the environment to goal squares. Despite its simple premise, the game becomes
extremely difficult to manage as the number of boxes and the size of the environment increase.
It has in fact been shown that the game is PSPACE-Complete [5]. We have extended the basic
Sokoban environment to include multiple movers, each represented by a planning agent. Multi-
agent Sokoban is representative of a class of environments in which the separate agent plans are
inherently disjoint. It also can be viewed as an environment in which space is a highly contentious
resource, requiring careful agent coordination to ensure that the agent plans are conflict free.

2 Introduction

Intelligent software agents will almost certainly be a critical component of future Air Force (AF)
distributed, heterogeneous information and decision-support systems. The Agents Technology
Research Group of the Air Force Research Laboratory’s Information Directorate is committed to
ensuring that the core technologies needed to support agent-based systems for AF needs are being
developed. One of these core technologies is the area of distributed multi-agent planning in highly
dynamic domains, a key component of the AF future Command and Control strategy [2]. Multi-
agent planning in the context of rapidly-changing environments, however, becomes an involved,
unmanageable problem rather quickly. Further, maximizing concurrency and ensuring conflict-
free agent plans becomes a difficult problem to manage when using techniques like plan repair and
replanning. Therefore, multi-agent coordination through conflict resolution of individual agent
plans can be an effective way to ensure safe planning while providing a reasonable execution time.

This report describes an approach that rapidly merges individual agent plans in highly dynamic
environments. Agents generate their own plans separately, and use a coordination process that
is concerned with maximizing parallelism and minimizing conflicts in the execution of the plans.
The algorithm is targeted towards environments in which a global goal G may be difficult for a
single agent to achieve alone, but becomes more manageable when the goal can be partitioned into
subgoals G = 57 A Sy A ... A S, in which we have n total agents, and each agent A; is responsible
for goal S;. Correspondingly, each agent A; generates a plan F;,. The problem now reduces to
agent coordination, by ensuring that no conflicts exist between plans.

For environments in which resources have high levels of contention, it is unlikely that each
agent’s plan can be executed without conflicting with some other agent’s plan. More specifically,
an agent’s list of primitive actions is likely to run into problems with another agent’s actions.
Thus, we propose a system architecture capable of dealing with such environments, consisting of
two basic principles: goal abstraction and flexible agent behavior.

Goal abstraction refers to decomposing a plan into a hierarchy of subgoals to be achieved by
the plan. In contentious environments, coordinating separate agent subgoals is far more effective
than relying on primitive actions, as enforcing synchronization actions on subgoals ensures that
plans expanded on these subgoals will be conflict free [4, 9].

Flexible agent behavior refers to agents not being bound to their initial plans. An agent bound
to its plan in a contentious environment will find it difficult to replan and/or use plan-repair as time
progresses [7]. The combination of goal abstraction and flexible agent behavior is well suited for
highly dynamic environments: as subgoal conflicts are worked out, agents are aware of subgoals
to be achieved, even if they initially belong to another agent, and plan from there. Note the distinc-

Agent A (White)

|
Il
I
I
N

Agent B (Black)

B_

(b) ©

=]

I
[]
)

Figure 2.1: An example Sokoban scenario. (a) The white agent must push the white box all the
way down, while the black agent must push the box up, then push it to the left. (b) The resulting
subgoal hierarchies for both agents. (c) Resource usage for all subgoals.

tion between subgoals and partial plans, where partial plans commonly characterize hierarchical
planning. It is implicit that when a partial plan is refined, it still belongs to the agent responsible
for it. An agent may own a subgoal, but is not necessarily bound to the plan that results in the
subgoal.

Motivated by these observations we have developed a 3-level multi-agent coordination archi-
tecture, where each level resolves fundamental issues in agent conflicts. These issues are: when is
it valid to generate a plan for a subgoal, who is most appropriate for completing the subgoal, and
how should the plan be carried out. This architecture is presented in detail in Chapter 3.

2.1 Multi-agent Sokoban

To ground this discussion we use the domain of Sokoban as a running example to better illustrate
the system. Sokoban is a simple discretized box pushing environment in which a mover (or multi-
ple movers) must push all boxes in the environment to goal squares. The mover must be “behind”
a box to push it in a given direction (i.e., on the opposite side of the box from the desired desti-
nation). Walls and other boxes in the environment serve as impediments that must be navigated
around. Despite its simple premise, the game becomes extremely difficult to manage as the num-
ber of boxes and the size of the environment increase. It has in fact been shown that the game is
PSPACE-Complete [5].

Sokoban in the context of a single agent becomes an unmanageable problem rather quickly,
therefore motivating the desire to split the problem up among multiple agents. If we assign a

subset of boxes to each agent, in which each agent is responsible for producing a plan that solves
its separate goals, the problem now becomes more manageable as we are significantly limiting the
search space for each agent. Our main objective now becomes ensuring each agent may execute
its plan conflict free with regard to the other agents.

Multi-agent Sokoban is representative of a class of environments in which the separate agent
plans are inherently disjoint. It also can be viewed as an environment in which space is a highly
contentious resource, requiring careful agent coordination to ensure that the agent plans are conflict
free. In this case, an agent’s plan will likely have a number of conflicts with other agents as time
progresses. Each agent thus should not be committed to its original plan and should be more
concerned with, at the very least, ensuring their subgoals are completed in a safe manner and do
not conflict with other agent subgoals.

3 Methods, Assumptions and Procedures

As introduced in Chapter 2, we have developed a 3-level multi-agent coordination architecture,
where each level resolves fundamental issues in agent conflicts. The first level, detailed in Section
3.1, handles the issue of when it is valid to plan for a subgoal. The second level, detailed in Section
3.2, handles the issue of who should be made responsible for achieving a subgoal. The third level,
detailed in Section 3.3, handles the issue of how to achieve a subgoal, in which agents reserve
resources for planning out primitive actions. Figure 3.1 presents the complete general algorithm
representing the architecture.

3.1 Coordinating Temporal Consistency

Verifying that subgoals are temporally consistent with respect to one another refers to the issue of
when is it valid to plan for a subgoal. To start, assume each agent A; has generated a plan P; to
achieve its goal S;, where their are n agents and the global goal GG is decomposed into separate
goals for each agent, such that G = S; A So A ... A S,,. Furthermore, assume a goal .S; can be
decomposed into a hierarchy of subgoals where at a particular depth of the hierarchy, there exists
a set of subgoals that fully compose the original goal. This representation is very much in line
with hierarchical task networks [6] and hierarchical plans [4]. Furthermore, each subgoal must be
defined in such a way that the resources it encompasses must be expressed in a compact manner,
yet never understating the resource usage. This is similar to summary conditions in [4], except that
in [4] summary conditions consist of STRIPS-like syntax of aggregated preconditions and effects,
while we choose to represent resource usage. The subgoal depth represents how fine-grained each
subgoal is in terms of resource usage.

Figure 2.1 shows an example of subgoal hierarchies for a simple Sokoban scenario. Our im-
plementation of a Sokoban game server is based the Asynchronous Chess server [8], modified for
the Sokoban domain to support synchronized actions. The pawns represent the respective movers
which belong to each agent. The white pawn belongs to agent A and the black pawn belongs to
agent B. Each agent generates its own separate plan for achieving its assigned goals (e.g., boxes
to be moved to goal locations). The stars (%) represent the goal locations for each agent, and each
agent is assigned a set of boxes (e.g., the white agent plans for the white box to be pushed into
the white goal). In constructing the subgoal hierarchy, we view a single box push as being the
lowest level subgoal, corresponding to a primitive “movement” action. More abstract goals are
represented as being a series of box pushes, or in terms of resources, the full amount of area in

function main (subgoal queue (), empty plan P, global goal)
while G not completed do
/I Level 1: WHEN is a subgoal valid?
ensure temporal validity of next S € @)
obtain leaf subgoals {q1, ¢2, ..., qn} C S
while qualitative time not met do
/I Level 2: WHO is assigned each subgoal
auction each subgoal ¢ € S
engage in subgoal auction with all other agents
obtain won subgoals R
/I Level 3: HOW is each subgoal planned for
for next r € R ensure resource exclusion
plan for r, add to P
end while
end while

Figure 3.1: Algorithm detailing the 3-level system architecture.

which boxes are pushed. For instance, agent A’s second level hierarchy depth indicates that each
subgoal is essentially the action of pushing a box 3 times. Note that resource reservation at every
level of box pushes only represents where the boxes are, but not the final box push. In other words,
it is roughly the summation of preconditions, but expressed in a more compact manner in terms of
resources.

3.1.1 Temporal Constraint Matrices

Assume that an agent A has a hierarchy of subgoals G = (G, Go, ..., G,,), where m represents
the depth of the hierarchy, and each element, G, is itself a set of subgoals for that particular
depth. Also assume an agent B has its own hierarchy of subgoals H = (H;, Ho, ..., H,,), where n
represents the depth of the hierarchy, and each element, H; is a set of subgoals for that particular
depth. We may represent the temporal constraints of B imposed on A by representing the conflicts
that exist between resource usage in their subgoals.

Now let us assume that we choose an arbitrary level in the goal hierarchy for A, ¢, such that
we have a list of (ordered) subgoals in G;, as well as for B, j, where we have a list of (ordered)
subgoals in H;. Temporal conflicts caused by B on A may be represented by viewing the ordered
subgoals as containing qualitative time for that particular hierarchy depth. For example, assuming
the sets G = (g1, 92, .., gx) and H = (hq, ho, ..., hy), the qualitative time of subgoal g; is i. For each
subgoal in G; there exist potential conflicts across all subgoals in /1, or in other words, at each
qualitative time in G; there exist potential conflicts across all qualitative times in ;. This infor-
mation can better be represented in terms of a matrix, which we call a temporal constraint matrix,
where each row represents the agent attempting to achieve its subgoals, each column represents
the opposing agent who may be in conflict, and each value in the matrix is a O or 1 indicating no

conflict or conflict, respectively.

To ground this discussion, the following matrices represent conflicts between the two agents in
Figure 2.1, using each agent’s lowest subgoal hierarchy level (the third level for agent A and the
second level for agent B):

000 0

888? 0000000

0000O0TO0O

Maop= 10001 Mp-a= 10001000
0001

00 0 0 0000O0TO0O0
000 0

The first matrix, M4_,p, represents agent A’s conflicts with agent B; similarly, the second
matrix, Mp_, 4, represents agent B’s conflicts with agent A. As A’s subgoals get processed, we are
moving down its matrix, while at the same time moving right in B’s matrix. Observe that when
B is at its qualitative time < 4 > (i.e., fourth column in Mp_. 4), agent A runs into conflicts at
qualitative time < 3,5 > (i.e., third through fifth rows of M4_.5). That is, since in the example
domain conflicts are spaces on the board, if B were to blindly follow its plan, it would move the
black box directly into A’s path, causing a conflict with A’s plan to move the white box. Similarly,
when A is at its qualitative time < 4 >, agent B has a conflict when it is at its qualitative time
< 3 >. Our objective is to avoid these conflicts as agent subgoals get processed.

3.1.2 Deadlock Graphs

The temporal constraint matrices allow agents to reason only so much about long term temporal
conflicts among agent subgoals. Therefore, we may also look at the matrix as in fact being a
directed acyclic graph detailing the various states an agent A is currently in, regarding another
agent B’s subgoals. In the current form of the temporal constraint matrix, each entry can be
considered a node that represents a conflict or lack of conflict. The graph is traversed by one of two
ways: A planning for a subgoal reduces to moving down, while B planning for a subgoal reduces
to moving right. Graph traversal fits in with how A represents rows in the temporal constraint
matrix, and B columns.

Using this representation we may also identify nodes in the graph that will in fact lead to con-
flicts, despite these particular nodes not actually containing conflicts. First, the temporal constraint
matrix is transformed into a directed acyclic graph. Nodes leading to conflicts may be derived by
observing that a node whose children all contain conflicts will also result in conflicts. The full
algorithm is detailed in Figure 3.2. Assuming agent A contains k subgoals and B contains [sub-
goals for arbitrary hierarchy depths we find that the worst-case time complexity of this algorithm
is O(k?I?). However, in practice this rarely occurs, as the algorithm will usually iterate over the
graph in linear time, making average-case time O(nkl), where n is the greater of k and [.

But representing the nodes as containing a conflict and not containing a conflict is still insuffi-
cient in reasoning about long term temporal conflicts. Thus, we can annotate the nodes to contain

7

function conflictDerivation (7 subgoals, j subgoals)
graphChange « true
while graphChange do
graphChange « false
forr=0to:—1do
forc=0toj — 1do
n < node, .
bC < n.bottomChild, rC « n.rightChild
if —n.conflictExists A bC.conflictExists A rC.conflictExists
then
n.conflictExists «— true
graphChange « true
end if
end for
end for
end while

Figure 3.2: Algorithm for deriving conflicting states.

meaningful information about states relative to the global goal. We term these graphs as deadlock
graphs. Each node can be one of three types: a safe node, a solvable node, and a deadlock node.
A safe node indicates that we may safely plan for our subgoal at our qualitative time. A solvable
node indicates we may not plan for our subgoal at our qualitative time, however we may wait for
an agent (or agents) to plan for its subgoals before we proceed. A deadlock node indicates a state
in which we will never be able to plan for a subgoal without running into a conflict. As shown in
the next section, these graphs are used in preventing conflicts among subgoals.

We may also further annotate the nodes of a deadlock graph for ease of processing. For a safe
node, we may record the minimum qualitative time it will take before we reach our goal state. For
a solvable node, we may record the minimum time to wait before we may plan again (i.e., before
we reach a safe node). Figure 3.3 contains the full deadlock graph construction algorithm. Using
the same representation we find the worst-case time complexity of the algorithm to be O (kl?).

3.1.3 Subgoal Coordination

We now illustrate the subgoal coordination algorithm, in addition to how to use deadlock graphs for
determining temporal validity. Refer to Figure 3.4 for the full algorithm. At the start, each agent
broadcasts its most abstract subgoal to all other agents. Each agent then observes if it is temporally
valid to process their subgoal (described in Sections 3.1.3.1 and 3.1.3.2). If all subgoals are found
to be temporally invalid, we then refine the subgoal hierarchy by having each agent broadcast its
subgoals at the next level of its hierarchy. This process is repeated until we find a temporally valid
set of subgoals among agents. Note that all subgoals need to be sent for each hierarchy level.
This is necessary for correctly inferring temporal consistency—subgoals only local to a qualitative

function constructDeadlockGraph (G;, H;)
forr =7to 0 do
forc=jto0do
n < node, .
if n.isGoal then
n.goalCost < 0
n.solvableCost «+— 0
else
traverseForDeadlock(n)
end if
end for
end for

function traverseForDeadlock (n)
if —n.conflictExists then
bC «+ n.bottomChild
rC < n.rightChild
if —=bC.isDeadlocked then
n < safe
n.goalCost «+— bC.goalCost + 1
else if rC.exists A —rC.isDeadlocked then
n < solvable
n.solvableCost < rC.solvableCost + 1
n.goalCost «+— rC.goalCost + 1
else
n < deadlocked
end if
else
rC « traverse right until non-conflict is found
if rC.exists then
n < solvable
n.solvableCost <+ nodesTraversed
n.goalCost «+— rC.goalCost + nodesTraversed
else
n « deadlocked
end if
end if

Figure 3.3: Deadlock Graph Construction.

function coordination (subgoal hierarchy ())
q € root(Q)
level — 1
solutionFound « false
subgoalsExhausted «— false
while —solutionFound A —sugoalsExausted do
gather all subgoals ¢; at level
solutionFound « temporarily Valid(g;)
if —solutionFound then
subgoalsExhausted «— a.areLL.eafNodes
if —subgoalsExausted then
q € children(q)
level « level + 1
end if
end if
end while

Figure 3.4: Subgoal coordination algorithm.

time are insufficient in correctly determining conflicts. For efficiency we may cache each agent’s
subgoal hierarchy as it is sent, eliminating the need to re-broadcast subgoal hierarchy levels in the
future.

It is possible to perform a more exhaustive search as in [4], however our aim is to minimize
communication overhead among agents. Expanding the subgoal search per subgoal hierarchy level
gives us an efficient means of finding a solution at the expense of foregoing certain subgoal level
combinations. Note, however, that we are not sacrificing the possibility of finding a solution. The
lowest levels of all subgoal hierarchies will be checked last, where this represents the most refined
subgoals. If a solution exists at any combination of higher levels, it is guaranteed to exist at the
lowest levels. If we have n agents and m leaf subgoals per agent, the time-complexity of this
algorithm reduces to O(n log(m)), assuming each agent’s subgoal tree is well-balanced.

This coordination algorithm has several advantages. First, for environments in which agent
plans are inherently disjoint, the algorithm will likely terminate at a high level of the subgoal
hierarchy, resulting in small communication overhead. Second, an agent’s privacy is maintained to
the extent possible. For mutually disjoint plans, only the most abstract plan information is sent to
agents. Under environments in which temporal conflicts are rampant, the leaf subgoals are forced
to be shared. However, this is a necessity in ensuring temporal conflicts are to be avoided in such
environments.

As illustrated in the coordination algorithm, we still need some way of defining temporally
valid subgoals. We may very well use a costly centralized solution in observing all possible subgoal
interactions for all agents. However since we are assuming a distributed environment and we are
looking for fast coordination, we have developed two approaches (discussed below) that use local
information in attempting to find a global solution. Common to the approaches is the idea of

10

traversing each agent’s deadlock graphs, such that we never enter a deadlock state. We however
make no guarantee of finding a solution if one exists.

3.1.3.1 Assuring Temporal Validity

In the first approach, agents first broadcast their local deadlock graph information to all other
agents. This consists of three nodes: the passive node, representing the node for which the other
agent plans and we do not; the active node, representing the node for which we plan and the other
agent does not; and the both node, representing both of us planning concurrently. Formally, an
agent A; constructs a triple to send to every other agent A;, C; ; = (a;;, pi j, bi j), Where a; ;, i ;,
and b; ; represent A;’s passive, active, and both nodes, respectively, with regard to A;.

We can now derive the logic for assuring temporal validity, based on the following three propo-
sitions:

1. P, — A;.canPlan N —a; j.deadlock N\ —p;;.deadlock N\ —(a; ;.solvable A p;;.solvable)
2. Py — Aj.canPlan A —a;;.deadlock N\ —p; j.deadlock N\ —(a;,;.solvable A p; j.solvable)

3. Py — Aj.canPlan N\ Aj.canPlan N —b; j.deadlock N —b;,;.deadlock N\ —(b; j.solvable N
b;;.solvable)

All three propositions essentially represent the same logic: we may plan our subgoal if we are
currently in a safe node, it does not result in a deadlock state for us, it does not result in a deadlock
state for another agent, and it does not result in both of us being in solvable states. Recall that a
solvable state indicates we are waiting on another agent, so if we are waiting on one another this
represents classic deadlock.

If P; holds then the agents may plan concurrently. If (P; A P%) holds, but not P, this indicates
that one agent may plan while the other must wait, regardless which one plans. Last, if P, holds
but P, does not, then agent A; may safely plan. If this logic holds across all agents, then it is safe
for all agents to plan the next subgoal. Once a subgoal has been planned for by the rest of the
architecture, the agents may attempt to enter into coordination again for the next subgoal.

3.1.3.2 Conflict Minimization

For the second approach, instead of agents taking a greedy approach to resolving temporal consis-
tency, we take a conservative approach to minimizing conflicts. It is similar to Clement’s Fewest
Threats First heuristic, found in [3].

As with the previous algorithm, the agents still exchange their active, passive and both nodes.
However, in this approach we strive to minimize the conflicts seen in the local node information.
This is similar to the work done in [1]. More specifically, for a given agent we look at how badly
we interfere with all other agents, in addition to how badly our current plan affects us. We achieve
this by having each agent enter into an auctioning process with all other agents. Assuming we have
n agents, we quantify this for each agent A, against every other agent A; using the following bid
computation:

11

if Vo, (pji-deadlock V a; j.deadlock V (a; j.solvable A pji.solvable)) then

bidi =
else

bid; = > (pj,i.solvableCost + a; ;.solvableCost)
end if

If we take an action (e.g., moving in the Sokoban example) that results in deadlock with respect
to all other agents, or we cause another agent to go to deadlock, then our bid is infinity—we are
unable to achieve our subgoal without resulting in deadlock. If this is not the case, then our bid
is based on how long (in terms of qualitative time) all other agents must wait as a result of our
subgoal being planned, as well as how much we may have to wait. The agents with the smallest
bids (including ties) may plan ahead for their subgoals.

One major difference between this and the previous algorithm is that it enforces strict synchro-
nization as to when subgoals may be considered valid. Subgoals that win the auction are then
processed by the rest of the architecture—however note that we must wait for all valid subgoals to
complete being planned for before we determine valid subgoals again. The end result is that the
auction process produces all valid subgoals up through the completion of their planning—we may
not enter into coordination for subsequent subgoals until all subgoals determined by the auction
have completed.

3.2 Contracting Subgoals

In Section 3.1 we described the mechanism by which agents can efficiently identify conflicts that
they may have with other agents. If we assume that each agent has found at most one subgoal
to be temporally consistent, then the problem reduces to which agent should be responsible for
producing a plan for each subgoal. In this section we present how the agents can determine this
using an auctioning mechanism.

3.2.1 Auctioning Process

Assume agent A; has a subgoal G that has been found to be temporally valid. Auctioning the entire
subgoal is unwise, as it places a burden on the winning agent to solely complete the task, as well as
making it difficult to determine a wise bid to place on such an abstract task. Instead, we will auction
all leaf subgoals of G (assuming G is not itself a leaf subgoal), defined by G = (g1, g2, ---, gn), ONE
at a time. Subgoals that are auctioned off are removed from G subgoals where no agent places a
valid bid remain in G for the next auctioning procedure, and no further subgoals of (G are processed
(recall Figure 2.1).

As agents win subgoals, they add them to a queue of pending subgoals S. Subgoals are then
processed one at a time, much like they were auctioned off one at a time: to maintain temporal
consistency. Temporal consistency is not guaranteed in this manner however, as a single agent may
contain a subgoal belonging to a different agent whose subgoal at the previous qualitative time has

12

not yet been completed. Hence, an agent may only map out plans for a subgoal if it is found to be
temporally consistent: the qualitative time for that subgoal is met. To achieve this, each subgoal
contains a unique identifier of the agent it originally belonged to. When a subgoal has been fully
planned for, that agent tells all other agents of this event, therefore agents always know the current
qualitative times of all subgoals.

It may seem unwise for an agent to auction off a subgoal which is dependent on the completion
of a prior subgoal. There is a significant advantage in doing so, however. When an agent receives
the subgoal, it may prepare for its completion while another agent (or agents) is completing the
prior subgoal (or subgoals). Additionally, the auctioning mechanism is set up such that if no one
chooses to complete a subgoal, it is held over into the next auctioning round. An agent may choose
to do so in such situations where it is overwhelmed by the amount of pending auctions it must
accomplish, and is unable to decide on another subgoal.

3.2.2 Bid Determination

An agent’s bid for a subgoal is primarily dependent on the agent’s current status (for instance, its
possession of resources), as well as its pending auctions queue .S. A bid effectively represents how
much it will cost for an agent to complete a subgoal. Of course, this cost may only be approximated
as it is impossible to predict the environment at the qualitative time of the particular subgoal.

Costs, where cost is defined as the number of primitive actions necessary to complete a subgoal,
are maintained for every subgoal of the pending auctions queue. If the queue is empty, then the
cost it takes to achieve a subgoal will be rather reasonable. However, as our queue increases, the
cost estimates become far more inaccurate. We therefore define two aspects to estimating cost:
optimistic approximation and a user-defined dampening function. The optimistic approximation
a 1s the cost it takes for a plan to complete a subgoal, assuming the environment is free of all
other agent resources. The dampening function d takes in the size of the pending auctions queue
and returns a value designed to dampen the optimistic approximation. We define the full bid as a
recurrence relation, for subgoal g:

bido(g) = d(0) * a(g)
bidi(g) = bid;_1(g) + d(i) * a(g)

In bid;, ¢ is the size of the pending auctions queue. We note that d should be a nondecreasing
function, since as the size of S increases our approximations grow worse. Additionally if the size
of S is so large that it becomes unreasonable to bid on an auction, we may set a threshold on d
such that at some large value of the size of S it returns infinity.

In the context of Sokoban this form of bidding works particularly well. For optimistic approxi-
mation, in situations where S is empty we apply breadth-first search in finding the shortest path to
the box. In searching the space we take into account all boxes in the scene, but ignore all movers.
The assumption made is that a mover’s position should not be accounted for since we will resolve
mover-to-mover conflicts via resource reservation (discussed in the next section). If S contains
goals, we simply use Manhattan distance as a way of computing the smallest distance it takes for
a mover to push a box. The dampening function is defined as d(x) = (x + 1)?, defined for queue
sizes up to 4. Beyond this it returns infinity.

13

3.2.3 Discussion

Once agents are assigned subgoals to achieve, they map out their plans as defined in the next
section. However, note that agents must all agree on the synchronization policy defined by the first
level of the architecture. Coordination at the first level implies that all subgoals divided among
agents may be planned for, but nothing beyond this. Thus agents must wait for all qualitative time
to be in the state agreed upon in the first-level coordination before proceeding, where qualitative
time essentially acts as barrier synchronization for agents.

The algorithm is similar to the work done in [10], in that an agent may allow for other agents
to complete subgoals for it, effectively repairing its plan. However, our system also handles two
important properties. Effects may be irreversible, as we have resolved subgoal conflicts at the first
level of our architecture. Additionally we allow for resources to be in contention among multiple
agents, which is detailed in the third level of our architecture.

There are a couple of advantages to using an auctioning process for subgoal completion, as
opposed to relying on an agent’s original intentions. In dynamic environments, the once valid plan
for completing an agent’s subgoal can quickly become invalid or difficult to accomplish. If it takes
another agent significantly fewer resources to achieve the subgoal, then we should let them handle
it. Secondly, subgoal auctioning tends to localize agents to resources in the environment. The
subgoals they take on will likely be close to the resources they are currently using, therefore agents
will localize themselves to parts of the environment, reducing the chance of resource conflicts.

3.3 Resource Reservation

After agents obtain subgoals from the auction, they may not simply refine them and add the actions
to their plan, as in [10]. Despite agents containing separate subgoals to achieve, it is very possible
for them to run into resource conflicts as their primitive plans are fleshed out. Thus we must allow
for a mechanism in which an agent’s plan for a subgoal is guaranteed to be conflict free. We handle
this via resource reservation.

Assume that an agent A; has an ordered set of subgoals to achieve ();. Also assume that g € Q);
is the first subgoal to achieve. Subgoal ¢ must be such that an agent is able to produce a coarse
representation of the resources required to achieve it. Otherwise, it is necessary to expand on ¢’s
children in the subgoal hierarchy until we are able to do so.

Once A; has represented its resource usage, it broadcasts the zone request, Z = (r;, ¢;, pi, gi)»
to all other agents, where r; represents resource usage, ¢; is the lower bound to completing the
subgoal, p; indicates the agent priority in completing the subgoal, and g; is the subgoal to be
completed. We will discuss priority in the next section. As soon as an agent collects all of the
other agent zones, it computes resource overlap with all other zones, and determines the smallest
lower bound cost among all agents.

With this in mind, an agent may then plan for a subgoal, following two rules: we may not use
resources in zones whose priority is greater than ours, and the length of our plan must not exceed
the smallest lower bound cost. Refer to Figure 3.5 for the zoning algorithm. If no zones with higher
priority overlap an agent’s zone, then the agent may plan under the knowledge that all resources

14

function zone (subgoal queue (), current plan P)
while () contains subgoals do
q + top(Q)
r «— resourcelsage(q)
p < computePriority(q, Q, P,r)
¢ « lower Bound(q, P)
broadcast (r;, ¢;, pi, ;)
Vj collect Zj = <T‘j, Cj, Py gj>
R «— replan(q, Z;)
append allr € Rto P
if q.isCompleted then
pop(Q)
end if
end while

Figure 3.5: Zone coordination algorithm.

currently in the environment (namely resources that other agents control) will remain static. If a
set of zones with higher priorities completely takes over our zone, then we must wait for these
zones to finish, or for these agents to subdivide their plans and refine their zones. If a set of zones
with higher priorities only partially overlaps our zone, then we may plan under the knowledge that
these resource zones are inaccessible to us.

3.3.1 Zone Priority and Lower Bound Cost

Zone priority effectively represents our bid for planning our subgoal. It is thus a function of how
costly our plan is (the length of the plan) and our intention (achieving a subgoal or not). Note that
agents who only require a small number of resources to satisfy their subgoal will likely finish their
subgoal in a small amount of time. Thus, priority is derived by an estimate of how long an agent’s
plan will be for completing a subgoal. A smaller amount of resource usage will result in a higher
priority.

For Sokoban, computing the lower bound to completing a subgoal is straightforward: we again
use Manhattan distance, as it represents the smallest distance in moving to a box. Computing
priority via the actual amount of resources an agent will use is, as already discussed, difficult to
determine. We use the same technique as discussed in Section 3.2.2 where we find shortest-path
distance, except we take into account both movers and box positions. In planning for subgoals we
set the priority to be the cost. When we are not planning for a subgoal (for instance, anticipating a
subgoal) we set the priority to be twice the cost. Subgoal completion is our main priority.

In applying this to a variety of scenarios in Sokoban, we find that although resource reservation
is rather course-grained, agents still exhibit a high level of concurrency in planning for subgoals.
In the case of smaller zones embedded in larger zones, the agent containing the smaller zone will
have the higher priority and thus may plan free of conflict, while the agent containing the larger

15

zone may plan around the smaller zone. Therefore, plans remain consistent, and the need to replan
and/or plan-repair is diminished.

Zones may also be used in resolving conflicts where subgoals become unattainable due to the
rapidly changing environment. An agent A; may broadcast its zone Z; = (r;, 00, 00, g;) to indicate
that it is unable to achieve its subgoal. This has two implications on the other agents. First, an
agent which is found to be in conflict with g;, but has a subgoal to complete, may find that the
completion of its subgoal results in no longer being in conflict with A;. The original algorithm
inherently resolves this situation. The second case deals with an agent which may not have a
subgoal to achieve, but is in possession of resources that result in A; not being able to achieve its
subgoal. In this case, the agent may construct a new plan to free up resources.

16

4 Results and Discussion

We have implemented our 3-level multi-agent planning architecture in a set of agents solving the
multi-agent Sokoban problem. As discussed in Chapter 3, our implementation of a Sokoban game
server is based the Asynchronous Chess server [8], modified for the Sokoban domain to support
synchronized actions. The running example (Figure 4.1, repeated from Figure 2.1) demonstrates
the 2-agent case. Recall that the pawns represent the respective movers which belong to each agent.
The white pawn belongs to agent A and the black pawn belongs to agent B.

Figure 4.1a show the resulting plans that each agent generates for achieving its assigned goals
(e.g., boxes to be moved to goal locations). The stars (%) represent the goal locations for each
agent, and each agent is assigned a set of boxes (e.g., the white agent plans for the white box to
be pushed into the white goal). In constructing the subgoal hierarchy, we view a single box push
as being the lowest level subgoal, corresponding to a primitive “movement” action. More abstract
goals are represented as being a series of box pushes, or in terms of resources, the full amount of
area in which boxes are pushed. For instance, agent A’s second level hierarchy depth indicates
that each subgoal is essentially the action of pushing a box 3 times. Similarly, agent B has only 3
subgoals in its plan, corresponding to moving the box up one position, and then left two positions.
Figure 4.1c shows the “resources” (i.e., board positions) that each agent requires to accomplish its
plan.

Once the agents have generated their individual plans, they coordinate their actions in order
to avoid conflict. As an example, consider the deadlock graphs for the running example shown
in Figure 4.2, derived from the temporal constraint matrices in Section 3.1.1 as described in by
the construct DeadlockGraph algorithm in Figure 3.3. Using the coordination algorithm (Figure
3.4), it is found that the second level of the subgoal hierarchies for both agents is adequate in
determining temporal validity. Using either of the algorithms (Sections 3.1.3.1 and 3.1.3.2) for
determining temporal validity will in fact give us a solution.

For the temporal validity algorithm outlined in Section 3.1.3.1, no form of synchronization is
enforced, yet subgoals still will not conflict in spite of this. For instance, agent A may completely
plan for its subgoals while agent B simply does nothing. Note that this results in B being placed
in the last column of its deadlock graph, where it may safely plan ahead. On the other hand, if B
completely plans for its subgoals before A does, we find that in A’s last column of the graph we
will encounter deadlock. Thus, B may only plan for two of its subgoals before waiting for A to
proceed.

The conflict minimization algorithm outlined in Section 3.1.3.2 enforces a much stricter policy
on synchronization. The auctioning process will result in the following ordering for subgoals being

17

Agent A (White)

|
Il
I
I
N

Agent B (Black)

B_

(b) ©

=]

I
[]
)

Figure 4.1: An example Sokoban scenario. (a) The white agent must push the white box all the
way down, while the black agent must push the box up, then push it to the left. (b) The resulting
subgoal hierarchies for both agents. (c) Resource usage for all subgoals.

planned for:

e qualitative time 1: A ;, By ; (concurrently planned)

e qualitative time 2: As o (A’s goals completed)

qualitative time 3: By o

qualitative time 3: B 3(B’s goals completed—global goal completed)

Note that at qualitative time 2, only agent A may allow for its subgoal to be planned. Agent B
has the possibility of entering a solvable state if its goal is planned for, so it loses the auction.

The method of assuring temporal validity is effective for environments in which only two
agents are planning. When more than two agents are planning, this algorithm does a poor job
at resolving the more intricate conflicts that arise between multiple agents. It is a rather relaxed
means of coordination, in that while it may allow for larger concurrency among subgoals being
temporally consistent, it does not quantify the effects of traversing nodes in the deadlock graphs.
On the other hand, it is an efficient means of subgoal coordination. The time complexity is O(a)
in the number of agents to communicate.

Conflict minimization, while requiring twice the amount of communication than that of the
other algorithm (but still linear in the number of agents), enforces tighter synchronization among
the ordering in which subgoals are considered temporally valid. The motivation behind this is
for an agent with the smallest amount of interference to allow for planning, in the hopes that the

18

Figure 4.2: (a) The running Sokoban example. (b) Associated deadlock graphs for each agent. “E”
nodes are safe nodes, “S” nodes are solvable nodes, “D” nodes are deadlock, and “G’ nodes are
goal nodes. (c) Associated resource usage for both agents.

other agents will subsequently traverse their deadlock graphs to better states. In the context of
Sokoban, we find that the amount of concurrency is reduced, but more intricate agent conflicts
become resolved through this auctioning method.

4.1 Limitations and Future Work

The focus of the system architecture described in this paper is on maintaining plan consistency, but
nothing beyond this. Using the terminology of [4] subgoal hierarchies strictly consist of and sub-
goals and no or subgoals. In other words we do not allow any subgoal alternatives. Incorporating
or plans into the current architecture will lead to more expensive search for subgoal coordination
(refer to Section 3.1.3) and a larger number of deadlock graphs.

Additionally our system only handles a certain subset of problems. It is unable to resolve
conflicts for which replanning/plan-repair is required to handle, such as in the Sokoban example
shown in Figure 4.3. While replanning for this particular example is rather simple, as described,
for more dynamic environments it becomes unmanageable. Having or plans incorporated in the
subgoal hierarchy may still not resolve the more complicated environments.

We believe that deadlock graphs, however, may be used in guiding plan-repair. In using plan-
repair, plan modification reduces to modifying the deadlock graph structure such that no form of
inevitable deadlock exists. Since deadlock graphs contain very useful information with regard
to what leads to deadlock at what qualitative times, we believe that they could be beneficial for

19

PAY

Figure 4.3: Sokoban example that current system is unable to resolve.

informed planning. Rigid coordination must be used in such situations, so that agents may agree
on who should modify their plans. In doing so, every other agent may safely adjust its deadlock
graphs.

20

5 Conclusion

We have presented a system architecture for handling multi-agent planning in highly dynamic
environments. Our work focuses on maintaining plan consistency based on the observation that
replanning/plan-repair in such environments becomes difficult to manage. We have developed and
implemented a 3-level system architecture based on each level resolving fundamental agent conflict
issues: when is it valid to plan, who should plan, and how should the plan be produced. The system
is suited for environments in which a goal may be partitioned among agents in order to make the
goal more manageable to complete.

21

6 References

[1] T. Bartold and E. Durfee. Limiting disruption in multiagent replanning. In Proc. of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems, pages 49-56,
2003.

[2] G. Braun. AFFOR Command and Control Enabling Concept - Change 2. AF/A5XS Internal
Report, 25 May 2006.

[3] B. Clement. Abstract Reasoning for Multiagent Coordination and Planning. PhD thesis,
University of Michigan, Department of Electrical Engineering and Computer Science, 2002.

[4] B. Clement and Durfee. Top-down search for coordinating the hierarchical plans of multiple
agents. In Proc. of the Third Annual Conference on Autonomous Agents, pages 252-259,
1999.

[5] J. Culberson. Sokoban is pspace-complete. Technical Report TR97-02, University of Alberta,
1996.

[6] K. Erol, J. Hendler, and D. Nau. Semantics for hierarchical task-network planning. Technical
Report CS-TR-3239, University of Maryland, March 1994.

[7] M. Fox, A. Gerevini, D. Long, and I. Serina. Plan stability: Replanning versus plan repair. In
Proceedings of International Conference on Al Planning and Scheduling (ICAPS-06), 2006.

[8] N. Gemelli, R. Wright, and R. Mailer. Asynchronous chess. In Proc. of the AAAI Fall
Symposium on Co-Adaptive and Co-Evolutionary Systems, 2005.

[9] T. Sugawara, S. Kurihara, T. Hirotsu, K. Fukuda, and T. Takada. Predicting possible conflicts
in hierarchical planning for multiagent systems. In Proc. of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 813—-820, 2005.

[10] R. van der Krogt and M. de Weerdt. Self-interested planning agents using plan repair. In
Proceedings of the ICAPS-05 Workshop on Multiagent Planning and Scheduling, pages 36—
44, 2005.

22

7 Symbols, Abbreviations and Acronyms

AF Air Force
AFRL Air Force Research Laboratory

Al Artificial Intelligence

23

	1 Executive Summary
	2 Introduction
	3 Methods, Assumptions and Procedures
	4 Results and Discussion
	5 Conclusion
	6 References
	7 Symbols, Abbreviations and Acronyms

